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 SOME PROPERTIES OF EXPECTED VALUES

Tt is useful to consider, more generally, the expected value of a function of X. For
example, if the radius of a disc is a random variable X, then the area of the disc,
say ¥ = nX?, is a function of X. In general, let X be a random variable with pdf
f(x), and denote by u(x) a real-valued function whose domain includes the pos-
sible values of X. If we let ¥ = u(X), then Y is a random variable with its own
pdf, say g(y). Suppose, for example, that X is a discrete random variable with pdf
S(x). Then Y = u(X) is also a discrete random variable with pdf g(y) and expected
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Deofinision 2.4.7
The variance of a random variable X is given by
Var(X) = E[(X - 1©*) (2.4.5)

Other common notations for the variance are 62, 02, or V(X), and a related
X

quantity, called the standard deviation of X, is the positive square root of the
variance, o = ay = ./ Var(X).

The variance provides a measure of the variability or amount of “spread” in
the distribution of 2 random variable.

In the experiment of Example 2.2.2, E(X?) = 2%(1/2) + 4%(1/4) + 8%(1/4) = 22, and
thus Var(X) =22 — 4% =6 and oy = /6 = 2.45. For comparison, consider a
slightly different experiment where two chips are labeled with zeros, one with a 4,
and one with a 12. If one chip is selected at random, and Y is its number,
then E(Y)=4 as in the original example. However, Var(¥) =24 and o
= 2J€ > oy, which reflects the fact that the probability distribution of ¥ h
more spread than that of X,

Certain special expected values, called moments, are useful in characterizing
some features of the distribution.

Dafinition 2.4.2
The kth moment about the origin of a random variable X is

= E(XY 3 {2.4.6)
and the Xth moment about the mean i3

= E[X ~ E(X)} = E(X — p)* (2.4.7)

Thus E(X") may be considered as the kth moment of X or as the first moment
of X*. The first moment is the mean, and the simpler notation u, rather than 4,
generally is preferred. The first moment about the mean is zero,

#y = E[X — E(X)] = E(X) - E(X)=0
The second moment about the mean is the variance,

#y = E[(X — p)’] = o?
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74 CHAPTE!
and the second moment about the origin 18 involved in the following theorem
about the variance.

Foporem 2.4.3 1 ¥ is a random variable, then
Yar(X) = E(X 5y — (2.6.8)
proof
yar(X) = E(X 2 X + 1)
= BE) — 2UE(X) + u?
- EXH - U+
which yields the theorem. )
it also foilows imrmediately that
EXY) =0+ u* (2.4.9)

~ As noted previously, the variance provides a measure of the amount of spread
in a distribution OF the variability among members of 2 population. A rather
extreme example of this occurs when X assumes only one value, ‘say

P[X =cl= 1. In this case EX)=¢ and Var(X) = 0.
The remark following Theorem 2472 dealt with the expected value of a linear

function of 2 random variable. The following theorem deals with the variance.
Theorem 2.4.4 If X is a random variable and @ and b are constants, then
Var(aX +b) = o* Var(X) (2.410)
proof
Var(aX + 0 = E[(aX +b—apx — b1
= E[a*(X — #x)’)
= a° Var(X) ]

This means that the variance is affected by a change of scale, but not by a trans-
lation.

Apother natura
E|X — pl, but the varian

to work.

absolute deviaiion,
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ce is generally 2
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The mean and variance provide a good deal of information about a population
distribution, but higher moments and other quantitics also may be useful. For
example, the third moment about the mean, 5, is a measure of asymmetry or
“skewness” of a distribution.

If the distribution of X is symmetric about the mean u = E(X), then the third
moment about g is zero, y, = 0.

Proot
See Exercise 28. 2]
We can conclude that if zz; # 0, then the distribution is not symmetric, but not

conversely, because distributions exist that are not symmetric but which do have
15 = 0 (see Exercise 29).

BOUNDS ON PROBABILITY -

Ttis possi'ble, in some cases, to find bounds on probabilities based on moments.

If X is a random variable and u(x) is a2 nonnegative real-valued function, then for
any positive constant ¢ > 0,

PluX)zcl < ELE?—Q]- (2.8.11)

Proof

if 4= {x|u(x) = c}, then for a continuous random variable,

1001 = | s s
= [0 dx+ | s a
A Ac
= J' u(x)f(x) dx

?ch(x)dx
A

= cP[X ¢ A]
= cPu(X) = c]
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A similar proof holds for discrete variables. 8

A special case, known as the Markov inequality, is obtained if u(x) = jx|" for
¢ > 0, namely

PIIX|=Zc] < §ﬂ2_,_}f\') (2.4.12)

Another well-known result, the Chebychey ineguality, is given by the following
theorem.

1f X is a random variable with mean £ and variance 62, then for any k>0,

L

p[IX — 1| = kol S 72 (2.413)
Proof
HuX)=(X - wre= 2o, then using equation (24.11),
Ex-uf 1
. PX—-w' ReNs— g <3
and the result follows. ]
An alternative form is
POX —pl<ko)Z 1 —ﬁf (2418)
and if welete= ko, then
»A
P[\X«-pl<s]>1—-% (2.4.15)
and
pii X ~ulzel € 5 (2.4.16)

Letiing k = 2, We S¢8 that a random variable will be within two standard devi-
ations of its mean with probability at least 0.75. Although this may not be a tight
bound in all cases, it is surprising that such a bound can be found to hold for all
possible discrete and continuous distributions. A tighter bound, in geperds

cannot be obtained, as shown in the following example.
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Suppose that X takes on the values —1, 0, and 1 with probabilities 1/8, 6/8, and
1/8, respectively. Then u = 0 and ¢* = 1/4. For k = 2,

P[-205) <X —-0<209]=P[-1 <X <1]

= P[X =0]
3 1

it also is possible to show that if the varance is zero, the distribution is con-
centrated at a single value. Such a distribution is called a degenerate distribution.

Let = E(X) and o? = Var(X). I o? =0, then P[X =] = 1.

Proof

If x 5 u for some observed value x, then |x — p| > 1/i for some integer i 2 1, and
conversely, Thus,

txw= ) [1x-u131]

i=1

and using Boole’s inequality, equation {1.4.5), we have
PLX # 4] < ;P[tx — ul ;%]

and using equation (2.4.16) we obtain
PIX #ul< 'iizaz =0

which implies that P[X = u] = L. B

APPROXIMATE MEAN AND VARIANCE

If a function of a random variable, say H(X), can be expanded in a Taylor series,
then an expression for the approximate mean and variance of H(X) can be
obtained in terms of the mean and variance of X.

For example, suppose that H(x) has derivatives H'(x), H"(x), ... in an open
interval containing u = E(X). The function H(x) has a Taylor approximation
about 4,

H(x) = H(p) + H'(p)(x — @) + 15" (> — @ (2.817)



78 CHAPTER 2 RANDOM VARIABLES AND THEIR DISTRIBUTIONS

which suggests the approximation

E[H(X)] = H() + LH"(p)o? (2.4.18)
and, using the first two terms,
Var[H(X)] = [H'(w]*e* (2.4.19)

where o2 = YVar(X).
The accuracy of these approximations depends primarily on the nature of the
function H(x) as well as on the amount of variability in the distribution of X.

Example 2.4.3 Let X be a positive—valued random variable, and let H(x)=Inx, sO that
H(x) = 1/x and H'(x) = —1/x*. Tt follows that

1Y 1
E(ln X]=Inp+ (5)(._ ;&_2.)02

and

1 2 2
var[ln X] = (;) g R

2.9
MOMENT GENERATING FUNCTIONS

A special expected value that is quite useful is known as the moment generating
function.

Definition 2.5.1
It X is a random variable, then the expected value
M f) = Eie™) (2.5.1)

is called the moment geneyating function (MGF) of X if this expected value exists for
all values of ¢ in some interval of the form _h <t < hfor some h>0.

In some situations it is desirable to suppress the subscript and use the simpiet
aotation M{D).
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Assume that X is a discrete finite-valued random variable with possible values x,,
vevs Xpm- The MGF is

M () = i €™ y(x;)
i=1

which is a differentiable function of ¢, with derivative
m
ROES ‘Zixe e™fylx;)
and, in general, for any positive integer 7,
m
M) = 3 xie™fxlx)
i=1

Notice that if we evaluate MP(t) at ¢ = 0 we obtain

m

MP0) = z X7 fx(x) = E(X")

i=1

the rth moment about the origin. This also suggests the possibility of expand-
ing in a power serics about t=0, Mx(t) =co+c,t +cyt® + -+, where ¢,
= E(X")/r.

These properties hold for any random variable for which an MGF exists,
although a general proof is somewhat harder.

If the MGTF of X exists, then
E(X") = M%) forallr=1,2,... {2.5.2)

and

E(X)
vl

My)=1+ 3 (2.5.3)
r=1

Proof

We will consider the case of a continuous random variable X. The MGF for a
continuous random variable is

w0

M y{t) = j efx(x) dx
-]

When the MGF exists, it can be shown that the rth derivative exists, and it can

be obtained by differentiating under the integral sign,

@

MY = j x"et*fy(x) dx

~a



86 CHAPTER 2 RANDOM VARIABLES AND THEIR DISTRIBUTIONS

from which it follows that forallr =1, D

E(X") = r K fylx) dx = j

o0
¥ i(x) dx = MP(0)
-

When the MGF exists, it also can be shown that a power series expansion about
zero is possible, and from standard results about poOWer Series, the coefficients
have the form ME(0)/r!. We combine this with the above result to obtain

W M(r) 0 tr -5 E Xr "
Mgp=1+Y MPOF 14+ % BEX
r=1 T 7=1 Pl
The discrete case is similar. B

-
‘| Example 2.5.2 Consider a continuous random variable X with pdf f(x) = e * if x > 0, and zero
otherwise. The MGF is

M) = E e * dx
{

@
o | et i
0

@
e (1 —tx

o

= t<1
The rth derivative is MP@ =71 - §)=r~%, and thus the +th moment is E(X")
= M®(0)=r!. The mean s p=EX)=1= 1, and the variance 18
Var(X) = EX) — @ =2-1=1.

i Example 2.5.3 A discrete random variable X has pdf f(x) = (1/2 #+1 f x=0,1,2,..., and Ze10

otherwise. The MGF of X is
X
My(t) = Y, &/ :
==0
i sl
=(1/2) . (€f2)
x=0
We make use of the well-known identity for the geometric series,

"y
1—t¢
R
1t

T BN e T g L



25 MOMENT GEMERATING FUNCTIONS &7

with s = &'/2. The resulting MGF is

MX(t)=2+e' t<In2

The first derivative is W) =62 —¢)"% and thus E(X)= My0)
=¢%2 — ¢% % = 1. It is possible to obtain higher derivatives, but the complex-

ity increases with the order of the derivative.

PROPERTIES OF MOMENT GENERATING FURNCTIONS

Theorom 2.5.\2 SIf Y = aX + b, then M y(t) = e M y(at).
Proot
M(t) = Ele™)
=5 E(et(ax +b))
=;Eﬁf“e“)
— ebrE(eatX)
= "M y(at) i

One possible application is in computing the rth moment about the mean,
E[(X — u)7]. Because My _ (1) = e M (1),

E[X — ] = j—; [e™“Mx(t)] le=0 (2.5.4)

It can be shown that MGFs uniquely determine a distribution.

Exampie 2.5.4 Suppose, for example, that X and Y are both integer-valued with the same set of
possible values—say 0, 1, and 2—and that X and Y have the same MGF,
2 2

M) = 3 efilx) = 3 )
x=0 y=0
if we let s=e¢" and ¢; =f i) —fx(i) for i=0, 1, 2, then we have ¢y + ¢, 3
+ ¢;5* =0 for all s> 0. The only possible coefficients are ¢, = ¢, = ¢, = 0,
which implies that f (i) = fy(i) for i =0, 1, 2, and conseguently X and Y have the
same distribution.

In other words, X and Y cannot have the same MGF but different pdf’s. Thus,
— the form of the MGF determines the form of the pdf.

This is true in general, although harder to prove in general,
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Theorem 2.5.3 Unigueness It X, and X, have respective CDFs F,(x) and F ,(x), and MGFs
M ,(t) and M.,(t), then F ) =F »(x) for all real x if and only if M4(t) = M ,(t) for
all ¢ in some interval —h <I < h for some h > 0. 7

For nonnegative integer-valued random variables, the derivation of moments
often is made more tractable by first considering another type of expectation
known as a factorial moment.

FACTORIAL M OMENTS

Definition 2.5.2

The rth factorial merment of X is

EX(X -1 X -rd 0 (25.5)
and the factorial moment generating function (FMGF) of Xis
Gty = E(tY) (2.5.6)

if this expectation exists for all ¢ in some interval of the form 1—h<t<ti+h

The FMGF is more {ractable than the MGF in some problems.

Also note that the FMGF sometimes is called the probability generating
function. This is because for nonnegative integer-valued random variables X
PIX=rl= GO)/r!, which means that the FMGF uniquely determines the dis-
tribution. Also note the following relationship between the FMGF and MGF:

Gyl) = E() = E(e¥™) = Mx (n 1)

Theorem 2.5.4 X hasa FMGF, Gy(t), then

Gyl = E(X) (2.5.7)

Gy(1) = E[X(X — 0l (2.5.8)

GO = B =1 X —r+ ] (2.59)
Proof

See Exercise 35.

§y is possible tO compute regular moments fromn factorial moments. Fof
example, notice that E[X(X -1)1= EX?—-X)= E(X?) — E(X), s0 that

(%) = E(X) + BIX(X = 1] (2.5.10)
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We consider the discrete distribution of Example 2.5.3. The FMGF of X is
Gylt) = My(In t)

1
=—— <)
2—t E
Notice that higher derivatives are easily obtained for the FMGF, which was
not the case for the MGF. In particular, the rth derivative is

G =r12 =1y

Consequently, E(X)=Gy{{)=112-1"2=1, and E[X(X ~ 1)]=GHl)
=212—1)">=2 It follows that E(X?) =E(X)+2=3, and thus, Var(X)
=3-12=2

SUMMARY

!

The purpose of this chapter was fo develop a mathematical structure for express-
ing a probability model for the possible outcomes of an experiment when these
outcomes cannot be predicted deterministically. A random variable, which is a
real-valued function defined on a sample space, and the associated probability
density function (pdf) provide a reasonable approach to assigning probabilities
when the outcomes of an experiment can be quantified. Random variables often
can be classified as either discrete or continuous, and the method of assigning
probability to a real event 4 involves summing the pdf over values of 4 in the
discrete case, and integrating the pdf over the set A in the continuous case. The
cumulative distribution function (CDF) provides a unified approach for express-
ing the distribution of probability to the possible values of the random variable.

The moments are special expected values, which include the mean and variance
as particular cases, and also provide descriptive measures for other characteristics
such as skewness of a distribution.

Bounds for the probabilities of certain types of events can be expressed in
terms of expected values. An important bound of this sort is given by the Cheby-
chey inequality.

EXERCISES

Let e = (i, j) represent an arbitrary outcome resulting from two rolls of the four-sided die
of Example 2.1.1. Tabulate the discrete pdf and sketch the graph of the CDF for the
following random variables:

(a) ¥Y(e)=i+].
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(o) Z{@y =1~ 5

(c) Wiy =t~ J%
A game consists of first roliing an ordinary six-sided die once and then tossing an
unbiased coin Once. The score, which consists of adding the number of spots showing on

the die to the number of heads showing on the coin (0 or 1),is 2 random variable, sa¥ X.
List the possible values of X and tabulate the values of:

(a) the discrete pdf.

(b) the CDF at its points of discontinuity.

{¢) Sketch the graph of the CDF,

(d) Find PLX > 31

(e) Find the probability that the score is an odd integer.

A bag contains three coins, one of which has a head on both sides while the other two
coins are normal. A coin is chosen at random from the bag and tossed three times. The
aumber of heads is a random variable, say X.

(a) Find the discrete pdf of X. (Hint: Use the Law of Total Probability with B,=a
normal coin and B; = two-headed coin.)

{by Sketch the discrete pdf and the CDF of X.

A box contains five colored balls, two black and three white. Balls are drawn successively
without replacement. {f X is the number of draws until the last black ball is obtained, find
the discrete pdf [(x).

A discrete random variable has pdf f(x)-
(a) Hf(x)= k(1j2y° for X = 1,2, 3, and 7e10 otherwise, find k.
(D) Isa function of the form fix)= k(12 — 1/2] for x= 0, 1, 2 a pdf for any k?

Denote by [x] the greatest Integer not exceeding x. For the pdlin Example 2.2.1, show
{hat the CDF can be represented as Fl (=) = ([x3f 122 for 0 <x = 13, zero if x = 0, and
one il x 2 13.
A discrete randor yariable X has a pdf of the form f(x) = ¢(8 — x) for x=0, 1,2.3,4,5,
and zero otherwise.

(a) Find the constant ¢

{(b) Find the CDF, F(x).

(¢) Find P[X > 231

{d) Find E(X)-
A nonnegative integer-valued random variable X has a CDF of the form
Fxy =1 —(1/2F V1 for x=0,1,2,..-and zer0 ifx <0

{a) Findthe paf of X.

(b) Find PO <X s 2071

{¢) Find PLX is even].
Sometimes it is desirable to assign aumerical “code” valuss to experimental responses that

are not basically of pumierical type. For gxample, in testing the color preferences of
experimental subjects, Suppose that the colors blue, green, and red oceur with probabihtles
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1/4, 1/4, and 1/2, respectively, A different integer value is assigned to each color, and this
corresponds to a random variable X that can take on one of these three integer values.

{a) Canf(x) = (1/4)"*'(1/2)' ! for x = —1, 1,0 be used as a pdf for this experiment?
{h) Can f(x) = (i)(l,:‘Z)z for x =0, 1, 2 be used?
(c) Can f{x)=(1 —x)4 for x=~1,0,2be used?

Let X be a discrete random variable such that P[X =x] > 0 if x=1,2, 3, 01
4, and P[X = x] = 0 otherwise. Suppose the CDF is F(x} = .05x(1 + x) at the values
x=1,2 3 014

(a) Sketch the graph of the CDF.
(b) Sketch the graph of the discrete pdf f{x).
(¢} Find E(X).

A player rolls a six-sided die and receives a number of dollars corresponding to the
number of dots on the face that turns up. What amount should the player pay for rolling
to make this a “fair” game?

A continuous random variable X has pdf given by f(x} = c(1 — x)x? if 0 < x < | and
zero otherwise.

(a) Find the constant ¢.
{(b) Find E(X).

A function f{x) has the following form:
flx)=kx~*1 l<x<®

and zero otherwise,
{a) For what values of kis f(x}a pdf?
{b) Find the CDF based on {a).
(¢} For what values of k does E{X) exist?

Determine whether each of the following functions could be a CDF over the indicated part
of the domain:

(a) Fix) =e™™; 0K x < oo,
b) Fix)=¢*; —w <x<0.
© Fixy=1—-¢7% —1£x <.

Find the pdf corresponding to sach of the following CDFs:
(a) Flx) ={(x*+2x + 1)/16; ~I<x<3.
(b) Fix)=1—e ¥ —dxe ™™, 0 g x<ow0;A>0

If fi(x),i=1,2,....n ate pdi’s, show that

Y, pif{x) is 2 pdf where p, 2 0 and ) p; =1
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A random variable X has 2 CDF such that

x{2 D<cxgl
Fiz) = {x —12 1<x<32
{a) Graph F(x).
{b) Graph the pdf f(x).
(¢) Find P[X < 1/2].
(d) Find P[X = 1/2}
(¢) Find P[X < 125).
(f) What is P[X = 1.25]7

A continuouns random variable X has a pdf of the form fix) = 2x{9 for 0 < x <3 and
sero otherwise.

(a) Find the CDF of X,

{b) Find P[X 2]

() Find P[—1 < X < L5].

(d) Find a nuraber m such that P[X < m) = P[X = m].
(e) TFind E(X).

A random variable X has the pdf
x f0<x<1

fix) =423 il <

0 otherwise

(a} Find the median of X.
{b) Sketch the graph of the CDF and show the position of the median on the graph.

A continuous random variable X has CDF given by

(8] fx<l1
Flx)= 2x — 2+ 1/x) fligx<?
i if2<x

{a) Find the 100 x pth percentile of the distribution with p = 1/3.
(b) Find the pdf of X.

Yerify that the following function has the four properties of Theorem 2.2.3, and find the
points of discontinuity, it any:
025~ if —eo<x<0
F(x) =405 fogx<1

A

t—e* f1Xx<@

For the CDF, F(x), of Exercise 21, find a CDF of discrete type, F, JAx),and a CDF of
continuous type, F.(x), and a aumber 0 < a < 1 such that

F{x) = aF{x) + (1 — a)F (x)
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Let X be a random variable with discrete pdf f(x) = x/8 if x =1, 2, 5, and zero otherwise.
Find:

(a) E(X).

(b) Var{X).

(c) E(ZX + 3).

Let X be continuous with pdf f(x) = 3x* if 0 < x < 1, and zero otherwise. Find:
{a) E(X).
(b) Var(X).
{c) E(X7").
(@) Find E(GX —5X* + 1)

Let X be continuous with pdf f(x) = 1/x* if 1 < x = oo, and zero otherwise.
(a) Does E(X) exist?
{b) Does E(1/X) exist?
(¢) For what values of k does £(X") exist?

At a computer store, the annual demand for a particular software package is a discrete
random variable X, The store owner orders four copies of the package at $10 per copy
and charges customers $35 per copy. At the end of the year the package is obsolete and

the owner loses the invesiment on unsold copies. The pdf of X is given by the following
table:

x|01234

f(x) | A 3 3 2

{a)} Find E(X).

(b) Find Var(X).

(¢} Express the owner’s net profit ¥ as a linear function of X, and find E(Y) and
Var(Y).

The measured radius of a circle, R, has pdf /{r) = ér{1 —#), 0 < r < 1. Find:
{a) the expected value of the radius.
{b) the expected circumference.
(c) the expected area.

Prove Theorem 2.4.5 for the continuous case. Hint: Use the transformation y = x — g in
the integral and note that g(y) = yf{x 4+ v} is an odd function of y.

Consider the discrete random variable X with pdf given by the following table:

X |—3 -1 0 2 2.2

f(x) l 14 14 (6-3.,216 18 3218

The distribution of X is not symmetric, Why? Show that g5 = 0.
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32.

38.

38.

37.

CHAPTER 2 RANDOM VARIABLES AND THEIR DISTRIBUTIONS

Let X be a nonnegative continuous random variable with CDF F(x) and B(X) < o0. Use
integration by parts 10 show that

E(X) = r[x _ R dx

Note: For any continuous random variable with E(j X |} < - this result extends to

~

E(X) = —3

Fix) dx + }w[l — F{x)] dx

(a) Use Chebychev’s inequality to obtain a lower bound on P[5/8 < X < 7/8] in
Fxercise 24, Is this a useful bound?

(b) Rework (a) for the probability P12 <X < 1]

{c) Compare this bound to the exact probability.

Consider the random variable X of Example 2.1.1, which represents the largest of two
aumbers that oceur on two rolls of a four-sided die.

{a) Find the expected vahuc of X.
(b} Find the variances of X.

Suppose E(X) = 4 and Var(X) = ¢ Find the approximate mean and variance of:
(a) €.
(o) /X {assuming i 7* 0).
{© n(X) {assuming X > 0)

Suppose that X is a random variable with MGT M {t) = {1/8) + (1 ja)e* + (5/8)e".
(a) What is the distribution of X7
(b} Whatis PLX = 217

Prove Theorem 2.54 for a nonnegative integer-valued random variable X.

Assume that X is 2 continuous random variable with pdf
flx) = exp [—(x+ 2] if —2 < x < co and zer0 otherwisc.
(a) Find the moment generaling function of X.

{b) Use the MGF of (a} to find E(X)and E(X3).

Use the FMGF of Example 2.5.5 10 find E[X(X — XX — 2)], and then find E(X7).

In Bxercise 26, suppose instead of ordering fout copies of the software package, the store
owner orders ¢ copies =csd) Then the number sold, say S, is the smaller of ¢ or X.

(a) Express the net profit Y as & linear function of 5.

(b) Find £(Y) {or cach value of ¢ and indicate the solution ¢ that maximizes the
cxpected profit.

Show that o* = E[X(X — 1] — ple =1
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Let ¥ry() = In [M (8], where M (1) is a MGF. The function §,{f} is called the curmulant
generating function of X, and the value of the rth derivative evaluated at 1 = 0, k, = YH0),
is called the rth cumulant of X.

(a) Show that = W', {0).

(b) Show that o? = y{0).

(¢) Use y4{t) to find  and ¢? for the random variable of Exercise 36.

(d} Use @ ,{z) to find p and o for the random vatiable of Example 2.5.5.



